THE STRUCTURE OF CORIOLIN, A NEW SESQUITERPENE ANTIBIOTIC Shuji Takahashi, Hironobu Iinuma, Tomohisa Takita, Kenji Maeda & Hamao Umezawa Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, Japan

(Received in Japan 16th September 1969; received in UK for publication 8th October 1969)

Coriolin (1) is a new sesquiterpene antibiotic isolated from a cultured broth of a

Basidiomycetes, Coriolus consors (Japanese name, Nikuusuba-take). In this report the structure
of coriolin is proposed as I based on spectroscopic data, chemical evidences, and biogenetic
consideration.

M. Anchel et al. isolated illudin S and M (2), illudol (3), illudalic acid, and illudinine (4) from Clitocybe illudens and marasmic acid (5) from Marasmius congenus. A humulene type precursor and a tricyclic cation are involved in the biosyntheses of these compounds. We have obtained a new sesquiterpenoid dioxide, coriolin, with the same carbon skeleton as illudol.

Coriolin is a crystalline neutral substance, m.p. 175°. The molecular formula $^{\rm C}_{15}{}^{\rm H}_{20}{}^{\rm O}_5$ was established on the basis of analytical and mass spectral data. The mass spectrum shows major peaks at m/e 280 (molecular ion), 262 (M-18), 244 (M-2X18), 251 (M-29), 233 (M-18-29),

4664 No.53

and 205. The infrared absorption at 3450-3300 cm⁻¹ and two deuterium exchangable protons in the NMR spectrum suggest the presence of two hydroxyl groups in the molecule. A ketone function is suggested by the absorption band at 1758 cm⁻¹, and a gem-dimethyl group is shown by absorption bands at 1192, 1218, 1369, and 1382 cm⁻¹.

The NMR spectrum (Fig. 1) of coriolin in D_6 -dimethylsulfoxide was analyzed with aid of double resonance experiments.

Ha: $3.82(J_{af}=5.5, J_{a-OH}=6.0)$, Hb: 3.75(S), Hc: $3.47(J_{cg}=9.5, J_{c-OH}=3.8)$, Hd: $2.96(J_{de}=7.0)$, He: $2.87(J_{de}=7.0)$, Hf: $2.7(J_{af}=5.5, J_{fg}=12.0, J_{fh}=9.8, J_{fi}=9.0)$, Hg: $2.26(J_{gc}=9.5, J_{gf}=12.0)$, Hh: $1.70(J_{hf}=9.8, J_{hi}=12.5)$, Hi: $1.26(J_{if}=9.0, J_{ih}=12.5)$

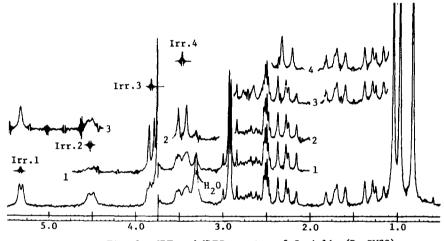


Fig. 1 NMR and NMDR spectra of Coriolin (D₆-DMSO)

The NMR spectrum shows the presence of three tertiary methyl groups (0.81, 0.97, and 1.048) and an exocyclic ethylene oxide (δH_d =2.96, δH_e =2.87, J=7.0 Hz, AB type quartet) (6). Two doublet signals at 5.33 (J=3.8) and 4.52 δ (J=6.0) disappeared by addition of deuterium oxide and coupled with carbinol protons H_a and H_c respectively. Among possible arrangements for a remaining oxygen only partial structure A can explain a singlet proton at 3.75 δ (H_b). The lower shift of the hydrogen, compared with a hydrogen on a usual epoxide ring, is apparently due to the effect of the adjacent carbonyl group (7).

Double resonance experiments revealed that H_f coupled with H_a and H_g , and methylene protons H_h and H_i . And H_g coupled with H_c and H_f . Partial structure B can be deduced from these observations.

Partial structures A, B, and C account for fifteen carbons, twenty protons, and five oxygens, that is, all elements present in the molecule. From above-mentioned results, the structure of coriolin (I) can be deduced by the biogenetic consideration. The structure was confirmed by following chemical evidences.

Hydrogenation of coriolin over PtO₂ in methanol affords dihydrocoriolin (II) $[C_{15}^{H}_{22}^{O}_{5};$ m.p. 205-7°; mol wt 282 (mass spectrum)], which has no carbonyl absorption in the IR spectrum. The NMR spectrum of II is very similar to coriolin, except for appearance of a new hydroxy proton at 4.16 δ and a proton at 4.38 δ , which couple with each other with 8.0 Hz. The latter proton further couples with a proton at 3.38 δ with 2.0 Hz. The proton at 3.38 δ of II corresponds to a singlet proton H_b (3.75 δ) of I.

Reduction of II with LiAlH₄ in THF gives a hexahydro compound (III) $[C_{15}H_{26}O_5; m.p. 189^\circ]$. The NMR spectrum of III (Fig. 2) shows the presence of four tertiary methyl groups (singlets at 0.78, 0.91, 1.02, and 1.06 δ in D_6 -DMSO) and five hydroxy groups (3.23 δ (singlet), 3.76 δ (singlet 4.05 δ (doublet, J=6.0), 4.24 δ (doublet, J=7.5), and 4.42 δ (doublet, J=3.0) in D_6 -DMSO), indicating that an exocyclic ethylene oxide was reduced, yielding a tertiary methyl and a tertiary hydroxy groups and another oxide was also reduced, yielding another tertiary hydroxy group. A doublet proton after deuterium exchange at 4.38 δ (J=2.0) of II corresponds to a triplet at 3.82 δ (J=9.0) of III in the same condition (3).

Oxidation of III with CrO₃ in acetic acid gives a triketone (IV) which shows IR absorptions at 1782 (cyclobutanone), 1740 (cyclopentanone), and 1710 cm⁻¹ (cyclohexanone). These absorptions strongly support that coriolin has a tricyclic carbon skeleton composed of four, five, and six membered rings.

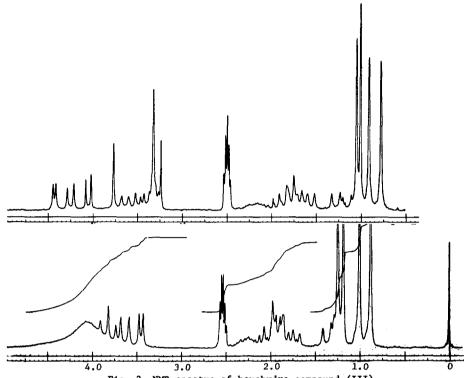


Fig. 2 NMR spectra of hexahydro compound (III)
Upper: D₆-DMSO, Lower: D₆-DMSO + D₅-Pyridine + D₂O

REFERENCES

- T. Takeuchi, H. Iinuma, J. Iwanaga, S. Takahashi, T. Takita, and H. Umezawa, <u>J. Antibiotics</u>,
 22, 215 (1969).
- T. C. McMorris and M. Anchel, <u>J. Am. Chem. Soc.</u>, <u>87</u>, 1594 (1965), K. Nakanishi, M. Ohashi,
 M. Tada, and Y. Yamada, <u>Tetrahedron</u>, <u>21</u>, 1231 (1965), T. Matsumoto, H. Shirahama, A. Ichihara,
 Y. Fukuoka, Y. Takahashi, Y. Mori, and M. Watanabe, <u>1bid.</u>, <u>21</u>, 2671 (1965).
- 3. T. C. McMorris, M. S. R. Nair, and M. Anchel, <u>J. Am. Chem. Soc.</u>, <u>89</u>, 4562 (1967).
- 4. M. S. R. Nair, H. Takeshita, T. C. McMorris, and M. Anchel, <u>J. Org. Chem.</u>, <u>34</u>, 240 (1969).
- J. J. Dugan, P. de Mayo, M. Nisbet, J. R. Robinson, and M. Anchel, <u>J. Am. Chem. Soc.</u>, <u>88</u>, 2838 (1966).
- 6. H. P. Sigg and H. P. Weber, <u>Helv. Chim. Acta</u>, <u>51</u>, 1395 (1968).
- 7. S. Marumo, K. Sasaki, K. Ohkuma, K. Anzai, and S. Suzuki, <u>Agr. Biol. Chem.</u>, <u>32</u>, 209 (1968).